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Phonons in 7* helical poly(4-methyl-l- 
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The normal modes and their dispersions for isotactic poly(Cmethyl-1-pentene) have been obtained in the 
reduced zone scheme using Wilson’s GF matrix method as modified by Higgs. The zone centre frequencies 
and Urey-Bradley potential field have been obtained by fitting the observed Fourier transform infra-red 
absorption bands. Some of the characteristic features of the dispersion curves are repulsion, exchange of 
character and Von Hove type singularities. The heat capacity obtained from the density-of-states agrees 
with the experimental data up to 305 K, at which glass transition sets in and the experimental curve exhibits 
a marked change in slope. 

(Keywords: poly(4methyb1-pentene); phonon dispersion; density-of-states) 

INTRODUCTION 

Isotactic poly(Cmethyl-1-pentene) (P4MPl) consists of a 
polymethylene chain with -CH2-CH-(CH3)2 as side 
group on every second carbon atom along the chain 
(Figure 1 shows one chemical repeat unit). Its exception- 
ally low density, transparency and high softening point 
make it a commercially important polymer’. Because of 
unusual loose packing, the density of the crystalline 
phase is less than that of the amorphous phase. 

The simple polymethylene chain in the usual paraffins 
and polyethylene takes up a planar zig-zag configura- 
tion. The presence of side groups throws the chain in 
a helical form due to steric interference, the helicity 
depending on the nature of the side group. In the 
particular case of P4MP1, the side group -CH2-CH- 
(CH3)2 gives it an approximate 7* helix. The deviation 
from this uniform 72 helix is small in comparison with 
poly(ethylene oxide), which also has a 72 helix but no side 
chain. Further, the crystal structure of P4MPl has a 
statistical disorder with respect to the upward and 
downward sense of the isomorphous helix*. This 
knowledge is important for an understanding of the 
spectra and spectral features. 

Recent publications3-8 on phonon dispersion in a 
variety of conformational states of polymers have 
demonstrated its potential in the fuller interpretation of 
Raman and infra-red (i.r.) spectra in addition to the 
interpretation of heat capacity measurements. Gabbay 
and Stivalag have reported an i.r. study of P4MPl. This 
study is, however, incomplete and the assignments are 
based purely on qualitative considerations. In the present 
paper we report complete normal mode analysis, phonon 

* To whom correspondence should be addressed 

dispersions and density-of-states for P4MPl. The 
density-of-states is used to calculate heat capacity 
which enables us to correlate microscopic behaviour 
with macroscopic properties. The heat capacity data 
compare well with the heat capacity measurements 
reported by Karasz et d.“. 

THEORY 

X-ray studies show2 that iso-P4MPl has a tetfagonal 
unit cell, space group P4 b2, w,ith a = b = 18.70A and c 
(along the fibre axis) = 13.68 A. For the present analysis 
the structure (model I) proposed by Kusanagi et al2 has 
been used. The internal rotation angles are rl = 165”, 
r2 = -72”, r3 = 40” and 74 = 50”, where 

71 = (C,‘-c,‘-c,-C,) r2 = (Ccy’ C-C&‘) 

,r3 = (H-C&&) ~~ = (C,-CIj-C,-H) 

The bond Olengths and bond angles used are: 
C-C = 1.54A, IC-CH2-C = 114” and all other bond 
angles are 109.5”. 

Calculation of normal mode frequencies 
The calculation of normal mode frequencies has been 

carried out according to Wilson’s GF matrix method” as 
modified by Higgs’* for an infinite chain. This method 
consists of writing the inverse kinetic energy matrix G 
and the potential energy matrix F in internal coordinates 
R. In the case of an infinite isolated helical polymer, there 
are an infinite number of internal coordinates which lead 
to G and F matrices of infinite order. Due to the screw 
symmetry of the polymer, a transformation similar to 
that given by Born and Von Karman can be performed 
which reduces the infinite problem to finite dimensions. 
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Figure 1 Chemical repeat unit of poly(4-methyl-I-pentene) 

The transformation consists of defining a set of 
symmetry coordinates 

S(S) = g R” exp(is6) 
s=--3c 

where S is the vibrational phase difference between the 
corresponding modes of the adjacent residue units. 

The elements of the G(S) and F(6) matrices have the 
form 

Gik(S) = 2 Gfkexp(isS) 

S=--00 

The vibrational secular equation which 
mode frequencies and their dispersion as 
phase angles has the form 

gives normal 
a function of 

[G(S)F(G) - Ji(6)Z] = 0 0 5 6 5 TT 

The vibration frequencies ~(6) (in cm-‘) are related to 
eigenvalues X(6) by the following relation: 

X(S) = 47r2c2v2(S) 

For any given phase difference S (other than 0 or 7r), 
the G(6) and F(6) matrices are complex. In order to 
avoid the difficulties involved in handling complex 
numbers, methods have been devised to transform the 
complex matrices into equivalent real matrices by 
constructing suitable linear combinations of coordinates. 
One method of transforming a complex matrix to its real 
matrix equivalent is through a similarity transformation. 
It can be shown that any complex matrix H = M + iN 
can be replaced by the real ones 

In the present case, we can write G(6) = GR(s) + iG’(S) 
and F(6) = FR(6) + iFI( where Ga(S), FR(6), G’(6), 

F’(6) are the real and imaginary parts of G(S) and F(S). 
The product H(S) = G(S)F(G) becomes: 

H(6) = 

= 

where 

GR(6) -G'(6) 

G'(6) GR(r5) 1 ’ 1:;:; :;i 1 
HR(S) -H’(S) 

H’(6) HR(s) 

HR(S) = GR(G)FR(S) - G’(S)F’(G) 

H’(6) = GR(S)F1(S) + G’(S)FR(G) 

The matrix H(S) now has dimensions 2N x 2N. The 
eigenvalues, therefore, occur in pairs of equal values. 
The difficulty of dealing with complex numbers is 
thus avoided. 

Force constant evaluation 

The force constants have been obtained by least- 
squares fitting. In order to obtain the ‘best fit’ with 
the observed frequencies the following procedure is 
adopted. Initially approximate force constants are 
transferred from isotactic polypropylene13 and other 
hydrocarbons having similar groupsi4)15. Thus, starting 
with the approximate F matrix F, and the observed 
frequencies Xobs (related through a constant), one can 
solve the secular matrix equation 

GF,L, =’ L,X, (1) 

Let AX = Xobs - Xi, in the above equation. It can be 
shown that in the first-order approximation 

Ax = JAF 

where J is computed from L,. We wish to compute the 
corrections to F, so that the errors ax are minimized. 
We use the theory of least squares and calculate 

J’PG = (J’PJ)D 

where P is a weighting matrix and J’ is the transpose of J. 
The solution to this equation is obtained by inverting 
(J’PJ) to give 

AF = (J’PJ)-‘J’PAX 

If the number of frequencies is greater than the 
number of F matrix elements, the matrix J’PJ should be 
non-singular and we obtain the corrections AF which 
will minimize the sum of the weighted squares of the 
residuals. If the corrections AF are fairly large, the linear 
relation between force constant and frequency term in 
the matrix equation (1) breaks down. In such a situation, 
further refinement using higher-order terms in the 
Taylor’s series expansion of AX is needed. This 
procedure has been developed by King and others16. 

The calculated frequencies at S = 0 and 6 = 0.577r 
(helix angle = 2 x 2n/7) are matched with observed i.r. 
frequencies. The Fourier transform infra-red (FT i.r.) 
spectrum (Figures 2 and 3) of P4MPl has been recorded 
in the 4000-200cm-’ frequency range in CsI on a 
Perkin-Elmer 1800 spectrophotometer, which was 
purged with dry nitrogen gas before recording the 
spectrum. Since the optically active modes correspond 
to phase values 6 = 0 and 6 = 0.57 7r, a reasonably good 
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Table 1 Force constants 

Coordinatea Value (mdyn .k’)h Coordinate0 

1 Y(+H) 4.2000 

2 v(C$-H) 4.1800 

3 @Z-H) 4.1800 

4 v (C,-H) 4.4100 

5 u(C,,-H) 4.4100 

6 @G-C;<) 2.8500 

7 v(C,-C,) 2.5000 

8 v(C,-C,) 3.1700 

9 v(C,-C,) 2.8500 

10 w-C,-CJ 0.4200 (0.175) 

11 4(c,-c,41) 0.4200 (0.175) 

12 ~(C,~C,,-C;,) 0.4200 (0.175) 

13 #J(C,-C,-C,) 0.4100 (0.175) 

14 &%Ci&,,) 0.3800 (0.170) 

++(H-C,-C,) - 4(H’-CL-C,) off-diagonal interactions: 

0.0033)’ 

0.0067)’ 

0.0083)’ 

15 w-c,-C,) 
16 $(C&-H) 

17 d(H-C-Q 

18 d(H-C,,-C) 

19 d(H-C,pC,) 

20 4(H-C&&) 

21 4(H-C-H) 

22 $(H-CB-H) 

23 &H-C-H) 

24 T(C&,) 

25 $L-C6) 

26 +Z,-C,) 

27 T(C<~-C~) 

Value (mdyn A-‘)b 

0.4100 (0.175) 

0.4150 (0.220) 

0.3820 (0.200) 

0.4220 (0.200) 

0.3820 (0.200) 

0.4220 (0.200) 

0.4050 (0.295) 

0.4040 (0.295) 

0.4040 (0.295) 

0.0250 

0.0100 

0.0175 

0.0250 

’ v, ++ and 7 denote stretch, angle bend and torsion, respectively 
’ The values in parentheses are the corresponding non-bonded force constants 
’ Corresponding to the three positions of H and H’ in gem-dimethyl group 

where A, is a constant and Tk is the estimated 
equilibrium melting temperature. For P4MP1, 
A, = 0.001 x lop3 Kmol JJ’ and Ti = 522 K. 

RESULTS AND DISCUSSION 

P4MPl with 18 atoms in its repeat unit gives rise to 54 
dispersion curves. The frequencies of vibrations were 
calculated at phase difference values from 0 to rr at 
intervals of 0.05 7r. The calculated frequencies at S = 0, $ 
and 21c, are optically active, where 11, = 0.57 7r. The force 
constants which give best fit to the observed FTi.r. 
spectra are given in Table 1. 

Backbone modes (bb), side-chain modes (SC) and 
modes involving coupling of backbone and side-chain 
modes (bs) are presented in Tables 2 to 4 at both the 
zone centre and helix angle, 6 = 0.57 7r. The potential 
energy distribution (PED) and the matched 
observed frequencies are shown alongside the calculated 
frequencies. The dispersions are plotted only for modes 
below 135Ocm-’ (Figures 4a and .5a), because for 
frequencies above this the modes show no dispersion. 
The lower two dispersion curves correspond to the four 
acoustic modes: two at S = 0 to translation and rotation 
along the chain axis, and the other two at S = 0.577r to 
transverse acoustic modes. 

Side-chain modes 
The dominant feature of the side chain of P4MPl is a 

gem dimethyl group. Four calculated modes at 1472, 
147 1, 1470 and 1469 cm-’ are assigned to asymmetric 
degenerate deformation modes of CHs. A band at 
1469cm-’ in the observed FTi.r. corresponds to these 
modes. 

The observed frequencies at 1384 and 1368 cm-’ (inset 

of Figure 2) are identified as a symmetrical CHs bending 
doublet, a characteristic feature indicating the presence 
of two methyl groups attached to the same carbon 
atom. These modes calculated at 1394 and 1370cm-’ 
show no dispersion. Similar doublets are reported for 
polyisobutene (1388 and 1362 cm-‘)“, poly(L-leucine) 
(1382 and 1364 cm-‘)‘* and poly(L-valine) (1390 and 
1368 cm-‘)“. 

The CH2 scissoring modes in the main and side chains 
are calculated at 1455 and 1437 cm-’ respectively. These 
are conformationally independent and are matched to 
the observed frequencies 1456 and 1437cm-‘. The side- 
chain CH2 scissoring mode in poly(L-leucine)” at 
1449cm-’ supports this assignment. In this region 
Gabbay and Stivalag have reported frequencies at 1460 
and 1439 cm-’ which are assigned respectively to CHs 
as-degenerate deformation and CHz scissoring modes. 

The frequency at 1317 cm-’ has been assigned to side- 
chain C-C stretch and CH2 wag. The frequency at 
1007cm-’ has a major contribution from the CHs 
rocking mode while a pure CHs rocking mode calculated 
at 909cm-’ is matched to a frequency at 9 18 cm-‘, a 
strong band observed in FTi.r. This is in agreement with 
the assignment of Gabbay and Stivalag. 

Backbone modes 
The backbone CH stretch, CH2 stretch and CHZ 

scissoring modes are calculated at 2927, 2899, 2851 and 
1437 cm-’ respectively and match well with the observed 
frequencies. Being highly localized, these modes are non- 
dispersive. A zone centre mode calculated at 1338 cm-’ 
having contributions from CH2 wag and C-C stretch, 
both belonging to bb, is matched with the observed 
frequency at 1337cm-‘. This is in agreement with the 
assignment of 1333 cm-’ frequency reported by Gabbay 
and Stivala’ . 
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Table 2 Calculated and observed frequencies and potential energy distribution for side-chain modes 

Frequency (cm-‘) Frequency (cm-‘) 

Calc. Obs. %PED Calc. 

n=o 
2962 1 2961 

2961 

2925 2926 

2902 

2885 2882 

2885 

2885 

2884 1 

2852 2855 

1472 1469 

1471 

1470 

1469 

1455 1456 

1394 1384 

1370 1368 

1029 1031 

1007 

986 1009 

872 874 

858 846 

749 731 

54 

4GWP9) 
v(C,-H)(lOO) 

v(C,-H)(92) 

v(C,~-H)(92) 

v(Ch-H)(IOO) 

v(C-H)(lOO) 

v(Cn-H)(99) 

v(C,-H)(lOO) 

v(Cj-H)(99) 

d(H-CnH)(94) 

O(H-C,-H)(95) 

d(H-C,-H)(95) 

b(H-Cn-H)(95) 

d(H-C,-H)(78)+&HpC,,-C)(17) 

4(C,-C,-H)(47)+&H-C,-H)(46) 

&C,-C,-H)(46)+$(H-C-H)(45) 

6 = (I.5711 

2962 

2961 

2925 

2902 

2885 

2885 

2885 

2884 

2852 

1472 

1471 

1470 

1469 

1455 

1394 

1370 

~(H-C,-C,)(32)+~(C,-C,-H)(25)+v(C,~C,)(l7) 1028 

$(C,-Cs-H)(51)+$(H-C-Cn)(lO)+v(C,-Cfi)(lO) 1009 

@(C,+,-H)(~O)+V(C,-CJ(22)+ 990 

4(H-C,-C&16) 

W,-C,-H)(50)+rKB-CJ(24)+rG,Cn)(9) 873 

cV+Cn-H)(33)+rG,-Cs)(32)+G-C,)(9) 864 

v(C,-Ca)(55)+4(H-C&)(14)+ 751 

W-G-H)(9) 

r(C,-Cy)(47)+r(Ca-CJ(38) 58 

%PED 

4GWCW 
v(C~-H)(lOO) 

v(C,-H)(Sl)+v(C,,~H)(l7) 

u(C,-H)(92) 

u(C,pH)(lOO) 

v(C,-H)( 100) 

v(C-H)(99) 

v(C,-H)(lOO) 

v(C,~-H)(97) 

&HPCn-H)(94) 

qWGH)(95) 

&H-C,-H)(95) 

@(HPC,-H)(95) 

~(H-C,,-H)(78)+~(H-C,c)( 17) 

~(C,~C,-H)(47)+~(H-C,-H)(46) 

,$++C,-H)(46)+&H-C-H)(45) 

4(H-C,-C,)(32)+W,-C, mH)(25)+v(C,j-C,)(17) 

W-Cn-H)(48)+&,-Cn)(9)+(H-C,+,)(9) 

~(C.,-C~-H)(~~)+V(C~-C~)(~~)+~(H-C~~C~)(I I)+ 

tK-CB)(l l)+G,,-C,)(lO) 

~(C,-C~-H)(~~)+Y(C,-C,)(~~)+U(C,~C,)(I~) 

~(C,~C,-H)(~~)+V(C,-C,)(~~)+U(C~~--C,)( 13) 

v(C,-C,)(SS)+d(H-C,-C)( 11)-t&C,-C,-H)(lO)+ 

v&,-C,)(9) 

T(C~-c~)(58)+r(C,-C,j)(l5)+Q(C,-C,,-C,j)(12) 

Table 3 Calculated and observed frequencies and potential energy distribution for backbone modes 

Frequency (cm-‘) Frequency (cm-‘) 
-_ 

Calc. Obs. %PED 

6=0 

2927 2926 G-H)(90) 

2899 v(C,-H)(90) 

2851 2855 v(C,-H)(99) 
1437 1437 $(H-C-H)(79)+#(H-C,-CJ(17) 

Note: Only dominant PEDs are given 

Calc. %PED 

6 = 0.57T 

2926 v(C,-H)(SO)+v(C,-H)(16) 

2900 u(C,-H)(92) 

2850 v(CE-H)(97) 

1438 @(H-C,-H)(8O)+b(HpC,-CJ(16) 

Mixed modes and dispersion curves 

Backbone-side chain junction modes, which are 
strongly coupled, show maximum dispersion (Table 5); 
for example, the mode calculated at 1148 cm-’ at S = 0 
[PED:CH2 bend (bb 43% and SC 23%) + CH bend (bb 
22%)] disperses by 47 wave numbers and appears as 
1101 cm-’ at S = r [PED: CH2 bend (SC 60%) + CH 
bend (bb 19%)]. Similarly, the 367cm-’ band at S = 0 
[PED: C-C-C bend (SC 41% and bb 21%) + CH bend 
(SC 17%)] disperses by 52 wavenumbers and has its PED 
changed at S = 7r [C-C-C bend (SC 16% and bb 
38%) + CH bend (SC 11% and bb lo%)]. The mode 
calculated at 139 cm-’ is another case of a strongly 
dispersed mode. Modes calculated at 1177, 785,423, 332 
and 102 cm-- ’ are some other mixed modes which 
disperse by about 20 to 30 wavenumbers. 

Another dispersive mode at a lower frequency of 
198 cm-’ is also a coupled mode and for this mode the 
methyl torsion contribution increases from 18% at 6 = 0 
to 63% at 6 = 0.39~ where it has a frequency of 
219cm-‘. At this S value it approaches very near the 
frequency of a pure methyl torsion mode (222cm-‘) 
which shows no dispersion. Another methyl torsion 
mode which has an energy corresponding to 228 cm-’ at 
S = 0 disperses by 26cm-’ on mixing with the (C,-C,- 
C,) bending mode. This mixing appears to be generally 
responsible for dispersion as it is further supported by 
the mode calculated at 1316 cm-’ (5 = 0). It disperses by 
30cm-‘. 

The mode at 889cm-’ with CHs rock and backbone 
stretch contributions and a non-dispersive pure CH3 
rocking mode at 909 cm-‘, both of the same symmetry 
species, appear to cross. There being no mirror plane 
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Table 4 Calculated and observed frequencies and potential energy distribution for mixed modes 

Frequency Frequency 

(cm-‘) (cm-‘) 

Calc. Obs. %PED Calc. Obs. %PED 

6=0 

1338 1337 

1316 1317 

1216 1219 

1209 

1177 1170 

1163 

1148 1150 

1095 1100 

975 973 

970 964 

909 918 

889 

806 815 

785 795 

423 419 

361 369 

332 336 

314 314 

265 267 

228 228 

222 222 

198 203 

139 

102 

41 

0 

0 

6 = 0.57s 

$(H-C,-C,)(43)+v(C,-C,)(37)+ 1331 

4(H-C,-C,)(l2) 

$(H-C,-C)(42)+v(Cs-C,)(20)+ 1302 1297 

@G-C&4) 

4(H-C,&)(38) +4(H-C&)(20)+ 1224 

VW,-C,)( 16) 
@(H-C,-C,)(26)+$(H-C,-C,)(24)+4(H-C,-C&7)+ 1213 

v(Cfi-C,)(9) 

4(H-C,-C,)(44)+4(H-C,-C,)(23)+ 1186 

#(H-C,-C&14) 

4(H-C,-C)(29)+&H-C,-C,)(29)+ 1165 

@(H-C,-C6)(24) 

$(H-C,-C,)(43)+#(H-CD-C)(23)+$(H-C&,)(22) 1119 1130 

4(H-CD-C)(49)++(H-C,-C,)(24)+&H-C-C&O) 1092 

I&,-C,)(~~)+V(C,-C&16)+&H-C,-C,)(l5)+ 979 

#(H-C,-C&12) 

v(C,-C,)(34)+@,-Cg-H)(20) +4(H-C,-C,)(l l)+ 965 

VW,-C,)(9) 

&C7-Cs-H)(90) 909 

d(C,-C,-H)(36)+v(C,-C,)(18)+ 900 

$(H-CD-C)(12) 

4(H-Co-C)(41)+@(C,-C,-H)(8)+d(H-C-C,)(8)+ 814 815 

v(c,-C~)(8)++G-C,)(8) 

$(H-C-C,)(57)+7(Ca-CE)(ll)+ 766 773 

G-C,)(9) 
d(C,-C,-CB)(29)+&-Co-C&5) +d(C,-C,&,)(9)+ 432 433 

W&,-C,)(8) 
&C,-C,-C,)(33)+4(C,-C,-CH)(21)+&H-CV-C6)(17)+ 387 383 

W,-CLI-C,)(~) 
4(C,-C,-C&)(25)+$(+C,-C,)(18)+4(C,-C,-C&18) 354 350 

&C,-C,-C8)(28)+W-C,-C&)(26)+ 308 303 

w,-C,-Cio)(20) 

&C,-C,-C,)(27)+r(C,-C,)(23)+G-C,-C&5)+ 290 289 

&C,-C,-C6)(14) 

r(C,-C6)(79) 244 245 

7(c,-c6)(99) 223 

4h(C,-C,-C~)(18)+T(Cr-Ca)(18)+~(H-C,-C,)(14)+ 216 214 

#(C,-C,-C/3)(13) 

~(C,-C,-C,)(24)+~(C,-C,-c,)(20)+T(CB-c,)(16)+ 186 187 

@-kC,)(10) 

ti(c,-c,,-c,)(41)+$(C,-C,-C,)(12)+ 109 

ti(H-C,-C)(8) 
T(C,-Cla)(20)+~(C,-C,)(l8)+4(C,-C,-C&14)+ 38 

&C,-C,-CB)(13)+d(H-C&)(10) 
- 26 
- 0 

_ 
Note: Only dominant PEDs are given 

4(H-C-C,)(25)+&H-CB-C)(19)+v(C,-C,)(17)+ 

v(C,-C,)(l2)+4(H-C,-C,)(l l) 

&H-C-C&30)+&H-CS-C)(24)+@-CJ15)+ 

@+C,)(ll) 

&H-C,-C,)(24)+gH-C,-C,)(2l)+&H-C-C&14)+ 

&H-C-C)(l2) 

d(H-C-C,)(42)+V(C,-c,)(14)+ 

&H-C&)(12) 

&H-C,-C&30)+&H-C,-C,)(23) +#(H-+C)(16)+ 

@(H-C&6)(16) 

4(H-C,-C6)(31)+flH-C&)(21)+&H-C,-CJ(19)+ 

@(H-C&,)(12) 

4(H-C,-C,)(34)++(H-CB-C)(28)+4(H-C&,)(24) 

4(H-CB-C)(35)+$(H-C,-C,)(34)+4(H-C-C&19) 

~G+J-H)(~~)+v(C,-C,)(~~)++-C&I~)+ 

d(H-C-C&11)+&H-C,-C,)(lO)+@(H-C,-C,)(lO) 

v(C,-CE)(~~)+&C~-C~-H)(~~)+ 

G-CB)(9) 

W-C,-H)(90) 

v(C,-C,)(24)+v(C,-C&21) +@(C,-Ca-H)(lS)+ 

4(H-C-C,)(12)+4(H-CI,-C)(lO) 

4(H-C,&)(46)+~(C,-C,)(l3)+ 

GSXl1) 

&H-C-C,)(49)+v(C,-C,)(l6)+v(C,-Cg)(9)+ 

S&,)(9) 

w-C,-CB)(27)+4(H-C,-C,)(l9)+~-C,)(9)+ 

4W-C,-CB)(~)+W,-C,&,)(8) 

~(C,-C,-C,)(21)+~(C,-C3-c7)(i3)+~(C6-C,-C3)(i2)+ 

4(C,-C,-C3N3) 

~(C,-C,-C3)(28)+~(H-C,-C6)(18)+~(C,-C,--C6)(10) 

$(C,-C,-C~)(38)+Ws-C,-CB)(19)+G,-C&&17)+ 

W-C&,)(8) 

~~c6~~~~~3~~22~+~~~~~c~~c~~~~i5~+~~c~~c~~c~~~i3~+ 

7(c~-~~)(i3)+~(c6-~~-c6)(io) 

T(C,-C&)(37)+4(CJ-CT-C3)(23)+7(C,-C,)(8)+ 

W-C&g)(6) 

r(C,-C6)(97) 

~(C,-C6)(44)+~(C6-C,-C~)(l6) 

7(Cy-Cs)(18)+~(C,-Cp-C,)(16)+w,-CE-CcJ(10)+ 

4YC,-C,-Cp)(9)+7(C,-C,)(8) 

W,-CT-C,)(2O)MC,-c,c,)(l6)+~(C,-C,)(l2)+ 

w-C,-Ca)(l l)+?w-C,-C,)(lO) 

r(C,-C4)(30)+4W-C&3)(20)+ 

G-C,)(l5) 

7(C~-CE)(47)+T(C,-C~)(12)+~C,-C,~C3)(10) 
- 
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Figure 4 (a) Dispersion curves and (b) density-of-states curves of P4MPI (1400-5OOcm-‘) 
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Figure 5 (a) Dispersion curves and (b) density-of-states curves of P4MPl (500GOcm-‘) 
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Table 5 Characteristic features of dispersion curves 

Frequency Maximum dispersion 
at6=0 frequency (cm-‘) 
(cm-‘) 

1338 
1331 (0.57) 

1316 

1286 (1.0) 

1216 

1224 (0.57) 

1177 
1199 (1.0) 

1148 

806 

785 

423 

1101 (1.0) 

814 (0.57) 

766 (0.57) 

455 (1.0) 

367 

419 (1.0) 

332 

228 

198 

354 (0.57) 

254 (1.0) 

216 (0.57) 
139 

191 (1.0) 

102 
109 (0.57) 

88 (1.0) 

Note: Only dominant PEDs are given 

symmetry along the helix axis for P4MP1, the modes are 
not allowed to crossl’. Further calculations at very close 
S intervals (0.0257r) confirm that it is not a case of 
crossing over. Instead, on coming close to each other 
the two modes mix, exchange character and get 
repelled.The two modes show repulsion near 6 = 0.75 rr 
at which the higher one is repelled upwards and the 
lower one takes a constant value. Consequent to this 
the lower one becomes a pure CH3 rocking mode while 

% PED 

4(H-C-C&43)+1&-C&37)+&H-C&,)(12) 

&H-C-C,)(25)+#(H-Co-C)(l9)+v(C,-C,)(17)+ 

v(C,-Cp)(12)+~H-C,-C,)( 11) 

4(H-C,-C)(42)+~(C&,)(20)+v(C,-C,&14) 

&H-C,-C,)(~~)+~+(H-C&)(~~)+V(C,-C,)(~~)+ 

c-C,)UO) 

4(H-C,-C&38)+&H-C,-C)(2O)+v(C,-c,)(16) 

&H-C,-C,)(24)+4(H-C-C,)(21)+@(H-C+)(l4)+ 

4YH-C&)(12) 

4(H-C,-C&44)+&H-C,-C,)(23)+@(H-C,-C&14) 

4(H-C,-Cb)(23)+4(H-C,-C,)(23)+d(H-C,g-C) (13)+ 

4(H-Cc-C,)(l l)+W,-QUO) 

4(H-C,-C,)(43)+#(H-CD-C)(23)+q+(H-C&,)(22) 

4(H-CI,-C)(60)+&H-C,-C,)(l9)+@(H-C,-Cg)(9) 

&H-C;,-C)(41)+$&L-C,-H)(8)+&H-C-C,)(8)+ 

@kCu)(8)+%-C,)(8) 

~~J(H-C~-C)(~~)+V(C,-C,)(~~)+V(C,-C,)(~ 1) 

@(H-C,-C,)(57)+7(C,-C,)(l l)++G-C,)(9) 

~(H-C,-C,)(49)+v(C,-C;)(16)+v(C,-Cg)(9)+7(C,-C,)(9) 

W-C,-C,)(~~)+SZ.-C,Y-C,)(~~)+WA-C~-C,)(~)+ 

WkC,-W(8) 

@(Cc-C,-C,)(34)+&H-C,-C,.)(l8)+(C,-C,-C,)(l5)+ 

7(CcC,)(9) 

4(C,-C,-C0)(33)+@-C,-Cg)(21)+d(H-C,-C&)(17)+ 

4(C,-C,&,)(8) 

qW,-C,-CB)(24)+W-C7-CB)(16)++W,-C,-C,)(14)+ 

@(H-C&)(1 ~)+~~J(H-C,-C,)(~O)+T(C,-C~)(~) 

qf~(C,-C,-C6)(25)+~(C,-C,-C~)(l8)+W-C,-Cg)(l8) 

W&C,-C,)(28)+&H-C,-Cs)(l8)+Ws-C&)(10) 

s-C&)(79) 

7(C1-C6)(34)+qxCE-C,-Cg)(31) 

4(C,-C,-Cg)(18)+7(C,-Cg)(l8)+#(H-C,-C,)(l4)+ 

WA-C&,)(13) 

+-C,W)+N+C,-C3)(16) 

4(C,-C,-C,)(24)+d(C,-C,-C,)(20)++-C&6)+ 

T(C,-C,)(lO) 

~(C&J(~~)+$(CJ-C,-C~)(~~)+G,-C~-C~)(~O)+ 

r(C,-G(9) 

G,-C,-C,)(41)+~(CE-Ca-C3)(12)+4w-C3-C)(8) 
~(C,-C,-C,)(2O)+~(C,-C,-c,)(l6)+~(CB-c,)(12)-r 

+w-C,-C~)(l~)+4w-C,-C,)(lO) 

~(C,-C3)(33)+r(C,-C,)(14)+~(C,-C,-C~)(l l)+ 

#Z-C,-Co)(lO)+$(H-C,,-C)(lO)+r(C~-CJ(l0) 

the upper one now has PED of the lower (Table 6, [I]). 
This is in agreement with the symmetry considerations. 

The modes calculated at 265 cm-’ and 3 14 cm-’ (both 
at 6 = 0) undergo repulsion at 6 = 0.64~ and exchange 
their eigenvector energy contributions (Table 6, [II]). 

For P4MPl Gabbay and Stivalag have reported two 
bands at 844 (strong) and 8 10 cm-’ (medium) which are 
sensitive to both tacticity and crystallinity. In the present 
work these are observed at 846 and 815 cm-’ and 
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Table 6 Pairs of modes that repel and exchange character 

Before exchange After exchange 
-_ 

Frequency (cm-‘) S/a % PED Frequency (cm-‘) S/n % PED 

[II 
909 0.7 G,S-H)(83) 911 0.8 ~(C,~C,)(~~)+~(C,~CI,~H)(~~)+ 

~(H~C,&,)(~~)+J/(C,,~C,)(~~) 
907 0.7 v(C,-C,)(26)+@(C,-+H)(23)+ 909 0.8 W-GH)(87) 

V(c,~c,)(16)+~(H-C,-C.)(~4) 

[III 
308 0.57 ~(C~~C~-C@)(19)+&C~-C,>~C~)(17)+ 316 0.70 $+(c,-c,-c9)(38)+&C,-C,,-Cd)(l I)+ 

W,+,-G)(38) W-C,-Cn)(l 1) 
290 0.57 ~(c,-c,-c&22)+~(c,~C,-CJ)(~5)+ 287 0.70 4W&-W(l2)+d(C,&,-C,i)(22)+ 

#GC,&)(lO) d(C,-c, -C*)(3 1) 

Note: Only dominant PEDs are given 
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Figure 6 Heat capacity wsus temperature plot of P4MPl showing the contribution of backbone modes (A), side-chain modes (B) and mixed modes 
(C). (D) Total heat capacity. A, Experimental data 

matched with the calculated values of 858 and 806 cm-’ 
respectively. Further, the bands at 833 (medium) and 
717cm-’ (strong) reported in the same work for the 
atactic P4MPl do not appear in our observed or 
calculated spectra. 

The good agreement between the experimental and 
calculated frequencies at 6 = 0 and S = 0.57 rr shows 
that the profile of the dispersion curves is basically 
correct. The force field also reproduces well the 
observed frequencies down to 186cm-‘. The above 
facts indicate the suitability of the model in the present 
investigation. 

Density-of-states and heat capacity of P4MPI 
Figures 4b and 5b show the plots of density-of- 

states versus frequency as obtained from the dispersion 
curves. The peaks in the frequency distribution curves 
correspond to regions of high density-of-states (Von 

Hove type singularities)” which reproduce well the 
observed frequencies. Some of the observed peaks at 459, 
374, 344, 324, and 208 cm-’ in the FTi.r. spectra, which 
could neither be assigned at S = 0 nor at 6 = 0.57 r, can 
be respectively matched to the peaks at 454,376,345,322 
and 208 cm-’ in the frequency distribution curves. 

From the frequency distribution curves, the heat 
capacity of P4MPl has been calculated from 80 to 
420K. The contributions to the heat capacity are 
calculated separately for the side chain, backbone and 
mixed modes. These contributions are plotted in Figure 
6. It is clear that the major contribution comes from the 
mixed modes. The sum of these three contributions gives 
the total heat capacity. The results show that the heat 
capacity is sensitive to the conformation of the chain, 
especially in the low frequency region. Our calculations 
of the heat capacity data are in good agreement with the 
experimental data of Karasz et al.“. The calculated data 
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also agree well with the data of the ATHAS Data Bank 
Update (1990)20. However, deviation is seen above 
305 K, which is the glass transition temperature. Above 
this temperature the amorphous regions present in a 
polymer pass on to rubbery state in which the different 
segments along the chain backbone acquire energy to 
rotate around the covalent bonds due to increased 
thermal energy. These segmental motions are not taken 
into account in the normal mode calculations and cause 
the deviation. The glass transition temperature depends 
on the side group present, intermolecular cohesive forces 
and the chain geometry as these are sources of hindrance 
to the segmental mobility. In P4MPl the bulky side 
group and regular geometry of the chain result in a 
higher glass transition temperature. 
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